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Introduction

This article describes a numerical approach to solve the time-dependent SCHRODINGER
equation of a particle in a one-dimensional potential. The work was inspired by a
publication of Goldberg, Schey und Schwartz [1]. The structure of the article is based
on the chapters of the books by Schmid, Spitz and Losch [2][3].

Problem

An a-particle (helium nucleus) starts at position x, at time ¢ = 0 and moves towards
a potential barrier or well of width zy. The a-particle is considered as an elementary
particle with no internal degrees of freedom. The potential function is

V(z) = {:I:Epot for xpot—2v/2 < & < Tpor+T1/2 (1)
0 otherwise

with suitable values for Ej; and 0. The movement of the a-particle is in the direction
of increasing values of = and it is assumed that xy; < Zpet —x1/2 at t = 0.

To treat this problem in quantum mechanics we are looking for a solution of the time-
dependent SCHRODINGER equation

iha—w(aj,t) = Hi(z,1) (2)
ot
with the HAMILTONian
h?: 92 - .
H__2m8x2+ (z). (3)

Equation (2) is a first-order differential equation with respect to time. Therefore, the
wave function ¢(z,t) can uniquely be calculated from the initial value of the wave
function v (z,0) at all times t. So we are looking for a solution ¢ (z,t) of the SCHRO-
DINGER equation (2), determined by a physically meaningful initial condition ¢ (x, 0).

Let us first consider a free particle, where V' = 0. In this case the SCHRODINGER
equation (2) reduces to

L 0P h? 0%
zha(:v,t) = —%@(:c,t). (4)

Particular solutions of equation (4) are the (non-normalizable) plane waves

V(1) = ¢12_7T exp {i(kz — wit)), (5)

where

e
- 2m

(6)

Wk



with an arbitrary wave number k.

Other solutions of equation (4) are obtained by superposition of plane waves with any
amplitude A(k), provided the integrals exist:

¥(e,t) = |

—0o0

(e.o]

A(K) iz, £) dls = ¢12_7T | AG) e itk —wn}dk. (0

Inserting ¢ = 0 in equation (7), we obtain the initial condition
(z,0) / k) exp (ikx) dk. 8
( \/— (ikx) (8)

We immediately recognize this is a FOURIER transformation. The function A(k) is
obtained by the inverse transformation

A(k (x,0) exp (—ikx) dx. 9)

I

Now we have to choose a suitable term for A(k). Different approaches are possible to
describe the motion of the a-particle. Only a wave function v (z,t) which is square inte-
grable and thus normalizable may give us a physically meaningful solution. A common
approach used in many textbooks on quantum mechanics is

—0'2(]€ — kM)2
P

A(k) = 7 exp {

Nz }exp{—z’(k’— k) ). (10)

Inserting this into equation (8), we obtain the initial condition

¥(,0) = — exp{W}exp{me}, (11)

3

leading to the probability density

a0 = e { (12)

This is the famous GAussian bell curve, also known as GAUSSian wave packet, where
x s specifies the peak and o specifies the width.

¥(x,0) is normalized by the factor 1/4/0+/7, such that

/_OO |v(z,0)|* dz = \/_/ exp{(z;ng)z}dm: L. (13)

The term exp (ikyz) causes the wave packet to move in the direction of increasing x
values.



Now let us have a look at the expectation values and the standard deviations of the
position operator x and the momentum operator p = h/i 9/0x, as well as the expectation
value of the HAMILTONian ) 2 o
h® 0
e - L (14)
2m 2m Ox?

at t = 0.

Let us recall the definitions of the expectation value (O), and the standard or root-
mean-square deviation (AO); of an operator O:

(O = [~ B 1) Ou(a, ) da, (15)

— 00

(A0), = /(O — (0),)2), = /(02), — (O)2. (16)

For the GAussian wave packet (11) we obtain the follwing results:

()o = 21, )

(p)o = hkar, (18)

(Arjo = . (19)

(=~ (20)

P iy = Wl _ OB A0 _ 18, (o o

Equation (17) corresponds to the classical idea of having the a-particle started at position
xpr. However, due to equation (19) we have to accept a position uncertainty (Ax)y in
the order of o.

Equation (21) shows a typical property of quantum mechanics. The relation F, =
p?/2m, well-known from classical mechanics, can only be obtained by setting (Ap)y =
According to the HEISENBERG uncertainty principle

(Ax)(Bp). > (22)
this implies that the position is uncertain and the a-particle could be found anywhere.
But since we want to locate the a-particle in a given area, we have to accept a momentum
uncertainty (Ap)o. However, this causes the wave packet to spread out with progressing
time, which makes it difficult to localize the particle. So we must try to keep the position
uncertainty (Az)o as small as possible at ¢ = 0.

From equation (19) it can be seen, that a small position uncertainty requires a small
value for 0. On the other hand we have to ensure that (Ap)y according to equation (20)
may not get too large.



Let us try o = 5fm. With & = 6.4655 fmv/MeVu we then obtain (Ap)y =~ 0.9 vMeVu
and (Ap)2/2m =~ 0.1 MeV for an a-particle with mass m ~ 4u. If we choose energy
values £ > 10 MeV we can neglect the term (Ap)2/2m and thus write down equation

(21) in the following form:
V2mE

by = = (23)

Let us now return to our original problem and look at the situation in the presence of
a potential according to equation (1). Our previous considerations remain valid if we
choose the start position z,; at t = 0 in such a way that the wave packet is far enough
from the potential barrier or well, with a wave function v (z, t) practically vanishing for
x> Tpt—y/2. A distance of about 20 fm can be considered to be sufficient for a width
of 5 fm.

Numerical Method
The formal solution of the time-dependent SCHRODINGER equation (2) is

Y(x,t) = exp {—;Ht} ¥(x,0), (24)

with the exponential operator

. l
- o (—iHt - 1 :
exp{_;Ht}zzmzl—lHt—H2t2+zH3t3+---7 (25)

— h 2h° 6h°

defined in terms of a TAYLOR series.

The exponential operator exp{—iHt/h} is unitary, and thus the norm of the wave
function does not change over time. We are now looking for a unitary approximation
of this operator to bring equation (24) in a form suitable for numerical evaluation.
Unfortunately the approximation

exp{—;Ht} %ZL:(F}' (26)

1=0
is not unitary for finite values of L.

The CAYLEY form

7 7
C = (1 - 2th> (1 1 2th> , (27)

however, is unitary (see reference [4]), and the expansion is

i 1 i
C=1—-Ht— —H*#¥+ —H%#+.... 28
h o2h? +4h3 * (28)



Comparing this to equation (25), we can see that this is a good approximation of
exp {—iHt/h}, which is exact up to the term of order ¢*. We can now write equation
(24) as

@/)([E,t) = C¢($70) (29)

The operators 1 —iHt/2h and 1+iHt/2h are commutable and from equation (29) we
obtain

G+€hHOw@¢%:G—ymH0w@ﬁ) (30)
To eliminate ¢ (x,t) we define the function
¢(z,t) = P(z,t) + ¥(,0), (31)
which leads us to the equation
1
(2+4BHQ¢@¢>:¢@ﬂy (32)

Replacing H by equation (3) we finally get the following differential equation

Lo W
2  8m 0x? 4h

) 8@, ) = ¥(z,0). (33)

We now want to derive a difference equation from this differential equation by discretiz-
ing the position . We apply the three-point formula (see references [2][3])

o ¢(z — s,1) — 2¢(z,1) + $p(z + 5, 1)
@(l’, t) = &2 9 (34)
where s is a small step and from equation (33) we obtain
uht 1 vht iV (x)t vht
- — st - t) — t) = :
s a =) + (5 o + ) 6e) = oot 5.0) = w(@.0). (39
Defining
Ty = jS, ¢§ - (b(xjat)v V; — V(ajj) wt = iﬂ(l’], )7 (36)
we finally get the difference equation
tht ), 1 iht th . iht 0
 8ms? ! (2 T e ) 7 8ms? 1= (87)

By discretizing equation (31) we get the desired solution

where qﬁ; is calculated according to equation (37) and w? is set as initial condition.



One aspect we have not yet taken into account. In fact, we have to solve the SCHRO-
DINGER equation (2) on the spatial interval (—oo, 00). This is not possible for any real
computer. Therefore, we restrict ourselves to the interval [0, ] with a suitable upper
boundary

b= jus (39)
and we set
Y(x,t)=0 for <0 and x>0, (40)
or in discretized form
;=0 for j<0 and j>j. (41)

For ¢(z,t) we obtain the boundary conditions

¢; =0 for j<0 and j>jp. (42)
Defining
iht
S 43
‘ 8ms? (43)
and 1 ht Vit
i iV;
dj == —L . j=0,...,j 44
7 2 + Qe + Ah ) J ) » Jb ( )
equation (37) together with the boundary conditions (42) can be written in the following
form . o
dy ¢ 0 Po Yo
c d ¢ ¢ U]
S T (45)
¢ djb_l ¢ z'b*l ;')rl
0 ¢ djb ;b ?b

This is a system of linear equations with a tridiagonal matrix. We will use the GAUSSian
method to solve these equations. The basic idea of this method is to decompose the
tridiagonal matrix into a product of an upper and a lower triangular band matrix. Let
us try the following decomposition

dg C 0

c di ¢

0 ¢ g,
Qap 0 1 v 0
B o I m
= ' .. (46)
B L
0 Jb Qs 0 1



Q) Q0o 0

Bi Bivo+aq a1
Bi1 Bi-1Vjp2+ 1 Vi1
0 ij ij’yjb_l + &,

Equating the corresponding coefficients results in a system of recursive formulae for the
matrix elements o; and -,

ag = do, (47)
c . .
P)/j:;a ]:07"'7jb_17 (48)
J
ajpr=djp1—cy;, J=0,...,05 — 1. (49)

If we write the right hand side of equation (45) in the following form

¢8 Qo 0 9o G090
0 p1 o 91 Bigo+a1ga
. = 5 = ; , (50)
?%_1 Bim Gjs1 Bi19j2+ Qjy195,1
(0 0 Bi, i By 91+, 95,
then, by equating the corresponding coefficients we obtain the recursive formula
U0
= — 51
90 . (51)
V) —cgia .
g =—"—"—, j=L....j. (52)

&

Inserting equations (46) and (50) in equation (45) results in another system of linear
equations

L 0 R Po+7091 90
I m 1 Pr+Meh 9
on | = : =] (53)
1 ’yj vl ¢§%71 Qﬁ;‘b,l +’ZJ b1 ¢§b 9 Jo—1
0 1 b ijb i
By equating the corresponding coefficients we obtain the recursive formula
;b = gjb’ (54)
¢§:gj—7]¢§+1, .]:jb_17707 (55)

which finally yields the desired solution of equation (45).



How do we now proceed in practice? Starting with the initial condition ¢ (z;,0) = ?,

j=0,1,2,..., 5, we compute ¢(z;,0) = ;’, j=0,1,2,...,7 on the basis of equation
(45) and equation (38) by applying the GAussian method explained above.

Then, this solution is set as the new initial condition and we have to solve equation (45)
again. This second run results in the solution ¢ (z;,2t) = ?t, j=0,1,2,..., 7, which,
as before, has to be set as the new initial condition for the third run.

By repeating this procedure we successively obtain all the solutions ¢ (z;,t), ¥(x;, 2t),
Y(xj,3t), ..., (x;,T) up to the time T = nt, n > 1.

Keeping in mind that the approximation (28) is exact up to the term of order ¢* and
the approximation (34) only up to the term of order s, we have to choose the time step
t and the spatial step s sufficiently small.

Programming

Programming is done in FORTRAN 77. This language is particularly well suited to
convert physical quantities and relationships into program code. Figure 1 shows the
parameters, variables and arrays corresponding to the physical quantities.

Physical | FORTRAN Physical | FORTRAN

notation | notation notation | notation

s PI V($]) V()

o SIGMA h HBAR

1/1/oy/7 | SIGPI h%/2m H2M

E E m M

kv KM (@) XEXP

Trm XM o X(J)

b B d; D(J)

Ty XV c C

jb JB (Z)(ib'j,t) PHI (J)

s S P(zj,t) PSI(J)

T TR |v(zj,t)|* | PSIABS(J)

nr NT Q; ALPHA (J)

t T i GAMMA (J)

n N gj G(D)

Epot NV+EPOT ) DELTA
(NV=-1, 0 oder 1)

Figure 1: Notation



The numerical part of the program is structured as follows:

PROGRAM QM

INTEGER JMAX, J, JB, NT, N, NV

REAL HBAR, H2M, M, SIGMA, B, XM, EPOT, EPS, PI

REAL KM, E, SIGPI, S, TR, T, XEXP, DELTA, XV

PARAMETER (EPS=0.0005, PI=3.1415926535, JMAX=3000)
PARAMETER (HBAR=6.4655, H2M=5.1875, M=0.5*HBAR*HBAR/H2M)
PARAMETER (SIGMA=5., B=20.%SIGMA, XM=B/4., EPQT=20.)
REAL X(0:JMAX), V(0:JMAX), PSIABS(O0:JMAX)

COMPLEX C, D(0:JMAX), PHI(O:JMAX), PSI(0:JMAX)

COMPLEX GAMMA (0:JMAX), ALPHA(O:JMAX), G(O:JMAX)

© 0 N O O W N+~

—
(@)

* (Input: NV,XV,E)

11 SIGPI=1./(SQRT(SQRT(PI)*SIGMA))
12 KM=SQRT (2. *M*E) /HBAR
13 TR=M*B/ (2. *HBAR*KM)

* (Input: JB,NT)

14 S=B/JB

15 T=TR/NT

16 DO 10 J=0,JB

17 X(J)=J%S

18 IF(ABS(X(J)-B/2.).LE.XV/2.) THEN

19 V(J)=NV*EPQT

20 ELSE

21 V(J)=0.

22 ENDIF

23 D(J)=CMPLX (0.5,HBAR*T/ (4.*M*S*S)+V(J)*T/ (4.*HBAR))
24 PSI (J)=SIGPI*CEXP(CMPLX(-0.5% ((X(J)-XM)/SIGMA)**2,KM*X(J)))
25 10 CONTINUE

26 C=CMPLX (0. ,-HBAR*T/ (8.*M*S%S))

* (OQutput: PSIABS, XEXP at time t=0)

27 N=1

28 20 CONTINUE

29 IF(N.EQ.1) THEN

30 ALPHA (0)=D(0)

31 DO 30 J=0,JB-1

32 GAMMA (J)=C/ALPHA (J)

33 ALPHA (J+1)=D(J+1)-C*GAMMA (J)
34 30 CONTINUE

35 ENDIF

36 G(0)=PSI(0)/ALPHA(0)
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37 DO 40 J=1,JB

38 G(J)=(PSI(J)-C*G(J-1))/ALPHA(J)
39 40 CONTINUE

40 PHI (JB) =G (JB)

41 DO 50 J=JB-1,0,-1

42 PHI (J)=G(J)-GAMMA (J)*PHI (J+1)
43 50 CONTINUE

44 DO 60 J=0,JB

45 PSI (J)=PHI(J)-PSI(J)

46 PSIABS(J)=PSI(J)*CONJG(PSI(J))
47 60 CONTINUE

48 XEXP=S/2.* (X (0)*PSIABS (0)+X (JB)*PSIABS(JB))
49 DO 70 J=1,JB-1

50 XEXP=XEXP+S*X (J)*PSIABS (J)

51 70 CONTINUE

* (Output: PSIABS, XEXP, NxT)

52 N=N+1

53 IF(((NV.NE.O) .AND. (ABS(B/2.-XEXP) .LT. (B/2.-XM)) . AND.

54 & (PSIABS(JB/50).LT.EPS).AND. (PSIABS(JB-JB/50).LT.EPS)).0R.
55 & ((NV.EQ.O0).AND.(N.LE.NT))) THEN

56 GOTO 20

57 ELSEIF (NV.EQ.O) THEN

58 DELTA=1.+ (HBAR*TR/ (M*xSIGMA**2) ) **2

59 DO 80 J=0,JB

60 PSIABS(J)=SIGPI*SIGPI/SQRT(DELTA)

61 & *REAL (DEXP (DBLE (- ( (X (J) -XM-HBAR*KM/M*TR) /SIGMA) **2/DELTA) ) )
62 80 CONTINUE

* (Output: PSIABS for an analytical wave packet)

63 ENDIF
64 END

As an upper limit for the spatial interval [0,b], we choose b = 100 fm, which results in
the j, + 1 nodes z; = js, j =0,1,...,, with s = b/j, (lines 14 and 17). The potential
barrier or well of width xy is located in the center of this interval. The height of the
barrier or the depth of the well is £, = +20 MeV. The wave packet with energy F
starts at xp;, = b/4 = 25fm. We have to type in values for j,, zy und E, whereas
Eoot, b and xp, are preset (line 7). Other preset quantities are i = 6.4655 fmv/MeVu,
h?*/2m = 1 -10.375 MeVim* = 5.1875 MeVfm® (see references [2](3]), m = 1#%/(h*/2m)
and 0 = 5fm (lines 6 und 7).

What we need now is a reasonable value for the time step t. We look at the expectation
value of position of the free wave packet moving from x,; = b/4 to b — xp; = 3b/4. The
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time needed for this distance will be used as reference time T', such that

Integrating equation (7), we obtain the wave function

a

_ NG
¢($;T) - 0_2 + ihT exp{—

Gt } eXp{ (%Fos + i@ — war))?

and using the abbreviation
R*T?

we get the probability density
1k 2
1 — (x — Ty — —MT)
z,T)|? = ex m 59
e D = —= ex . (59)

Now we can calculate the expectation value of position according to equation (15)

Rk T
() = 20 + TM , (60)

and with zy, = b/4 we obtain the reference time (line 13)

mb

2hkyv (61)

We decompose the time interval [0,77] in ny subintervals and finally get the time step
(line 15)
T mb

=== 62
nr 27_lk’M7LT ( )
To keep the program flexible with regard to the time step, the value for nr has to be

typed in.

The potential values V(z;) are calculated within an IF construct (lines 18 to 22). We
have three choices: No potential at all (NV=0), potential barrier (NV=1), or potential
well (NV=-1). The calculation of the diagonal elements d; and the off-diagonal element
¢ according to equations (44) and (43) is done in lines 23 and 26, respectively. With

kar given by equation (23) and the normalization factor 1/1/o+/7 (lines 11 and 12), the
initial values ¢(z;,0) are calculated in line 24 according to equation (11).

After this preparatory work we are now able to solve the system of linear equations
(45). We set the counting index for the number of time steps on n = 1 (line 27). Then,
the processing of several formulae can be carried out. Since the lines of code speak for
themselves, we simply note the cross-references: (47) in line 30, (48) and (49) in the DO
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loop from line 31 to 34, (51) in line 36, (52) in the DO loop from line 37 to 39, (54) in
line 40, (55) in the DO loop from line 41 to 43 and (38) in the DO loop from line 44 to
47. In this loop, the values of [¢7*|* = |¢)(x;,nt)|* are also computed. Since the matrix
elements d; and ¢ do not change with time, we need to compute the matrix elements o
and 7; only once, what we achieve by the query in line 29.

From line 48 to 51 the expectation value (z),, is calculated according to equation (15).
For this purpose, we use the trapezoidal rule (see references [2][3]). In fact, we could do
without line 48 because we do not allow the wave packet to reach the boundaries and
thus we have |1 (2o, nt)|? ~ 0 and |¢(x,, nt)|* ~ 0. In addition, due to our choice zy = 0
the first term is identically equal to zero already.

Now we can output the results: wave packet |1 (z,nt)|?, expectation value (z),; und
time nt. After that, the counting index n is increased by 1 (line 52) and an extended
query starts on line 53. If NV= 41 and the wave packet has not yet come too close to the
boundaries and the expectation value of position is in the range of xy; < (), < b—x )y,
the program jumps back to line 28. Otherwise the program is finished. If NV= 0 and
n < nr, the program also jumps back to line 28. Otherwise the wave packet according
to equation (59) is calculated separately at time 7' = nrt (lines 58 to 62) and then the
program is finished.

Examples

The presentation of the output data is best done in graphical form (see figure 2).

The upper diagram shows the probability density |¢(x,¢)[?. The lower diagram shows
the potential shape V' (z) and the movement of the expectation value (z);. The time is
displayed in the upper diagram in units of 1 bsec = 10~2! sec. Here we make use of the

conversion 1fmy/u/MeV = 0.1018 bsec.

(i) Test of accuracy. Let us consider the case with no potential at all (NV=0). We
calculate two wave packets, numerically and analytically, and compare them at time 7.
If their shapes largely coincide, the values we have chosen for j, and ny are sufficiently
large for a given energy E. Suitable values are j, ~ ny ~ 1000 for £ = 10 MeV and
Jp = nr ~ 2000 for £ = 40MeV.

(ii) Partial reflection. Partial reflection at the potential boundaries occurs both at
the potential well for arbitrary energies E (see figure 3), and at the potential barrier for
E > E,o (see figure 4).

Strictly speaking, we have to deal not only with one but with multiple reflections. The
first partial reflection occurring at the left boundary is the most striking one. Then there
is another significant reflection occurring at the right boundary. These partial reflections
at the potential boundaries are going on as long as the wave packet is partly trapped
between these boundaries.
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0.4
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0.2 probability density
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Figure 2: Starting position of the wave packet (E = 25MeV, zy = 10 fm)

The superposition of reflected and non-reflected parts of the wave packet results in
interesting patterns of interference. The distance between two maxima or two minima
is exactly equal to half of the wavelength of the underlying “carrier wave” 1. Please
note that the wavelength depends on the difference £ — V' (z) and that the maxima and
minima stay put and do not move.

(iii) Tunneling. This effect can be found in the case of a potential barrier with £ < E,
(see figure 5).

The wave packet partly penetrates into the potential barrier at the left boundary and
then escapes from the barrier over the right boundary. Again, the patterns of interference
mentioned in (ii) show up.

(iv) Resonance. This effect can be found in the case of a potential barrier with
E ~ E,o (see figure 6).

The wave packet is partly trapped between the potential boundaries, moving back and
forth very slowly. Due to partial reflections, it can take quite some time until the wave
packet vanishes.
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0.55 bsec

0.73 bsec

0.92 bsec

1.11 bsec
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1.46 bsec

1.65 bsec

1.83 bsec
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Figure 3: Partial reflection at the potential well (F = 10 MeV, zy = 7fm)
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0.27 bsec : 0.37 bsec

0.47 bsec 0.57 bsec

0.67 bsec 0.77 bsec
° °

0.87 bsec 0.97 bsec

[ ] [ ]

Figure 4: Partial reflection at the potential barrier (E = 40 MeV, zy = 7fm)
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Figure 5: Tunneling (E = 15MeV, zy = 1.2fm)
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Figure 6: Resonance (E = 20 MeV, zy = 7fm)
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